

16

LEVEL 4: LOGICA

NIVEAU: 

De applicatie geeft nu pagina's weer en je kunt ertussen navigeren. De informatie die je op de aanvraagpagina invult,

wordt echter nog nergens voor gebruikt. In dit level voegen we logica toe aan de applicatie.

Hieronder staan de specificaties van de logica zoals aangeleverd door de fictieve zorgverzekeraar.

Deze gaan we in kleine stappen modelleren in Blueriq. Je hoeft die dus nu niet in één klap te modelleren!

De premie van de polis wordt berekend met behulp van de volgende formule:

PremiePerMaand =
PremieBasisVerzekering + PremieAanvullendeVerzekering - Korting

De premie voor de basisverzekering is altijd -.

Klanten die kiezen voor een eigen risico van meer dan - krijgen 5%
korting op de basispremie.

De premie voor aanvullende tandartsverzekering is - en voor aanvullende
fysiotherapie -

Een aanvrager wordt gezien als gezond als hij of zij dagelijks meer dan 1 uur
beweegt of wekelijks meer dan 5 uur.

1. Aangezien de aanvullende premie niet altijd hetzelfde is, maar afhangt van de waarde die je kiest als type

aanvullende verzekering, is een beslistabel (decision table) het element dat deze beslissing het beste kan
modelleren.

Maak de beslistabel zoals weergegeven aan en maak hem
verder af. Deze beslistabel (kies een zinvolle naam)
bepaalt de waarde van de premie van de aanvullende
verzekering voor alle mogelijke aanvullende
verzekeringen: Tandarts, Fysiotherapie, beide (het
toverwoord is AND) of geen enkele (unknown is een ? in
Blueriq).

Een kolom toevoegen aan een beslistabel kan door in een cel te gaan staan en dan op de hangende druppel met

een plus erin te klikken. De volgorde van kolommen doet er doorgaans niet toe, maar omdat Blueriq stopt met
afleiden als er een waarde is bepaald én de tabel van links naar rechts afgewerkt wordt, geldt voor deze tabel dat
de volgorde wel van belang is. In ieder geval dient de kolom voor beide aanvullende verzekeringen vooraan te
staan!

17

Koppel de beslistabel niet met een default value aan een attribuut! Het modelleren van de beslistabel zelf is
genoeg.

Als je wilt kijken in de Runtime, is de kans aanwezig dat deze tabel “het nog niet doet”. Dit komt omdat we in de
container of in die container op de pagina nog even moeten vertellen dat het attribuut
Polis.TypeAanvullendeVerzekering bij wijziging aanleiding is voor een herberekening en dus een Refresh moet
veroorzaken.

Is de aanvullende premie
die berekend wordt ook
Read only? Dat is
noodzakelijk, want anders
berekent Blueriq dat
attribuut niet, hoeveel
logica je er ook op loslaat.

2. De berekening voor het

attribuut voor de premie van de
basisverzekering is altijd
hetzelfde, het is een constante
voor dit attribuut! Daarvoor
gebruiken we de default value
(constant) bij het attribuut. Zet
de default value van het
attribuut Polis.PremieBasisVerzekering op een Constant van 99.

3. De waarde van het attribuut Polis.Korting is

• ofwel 0 euro,

• ofwel 5% van de basispremie.

Dat hangt af van je eigen risico. We kunnen een business rule maken in
combinatie met een default value (constant) van 0 euro om deze korting af te
leiden.

Een beslistabel met een kolom voor 0 euro en een kolom 5% had ook gekund.

4. De berekening van het attribuut Polis.PremiePerMaand is een eenvoudige optel- en aftreksom van drie
attributen. Maak daarvoor een default value (expression) bij het attribuut.

Nu we de logica elementen hebben gemaakt om alle attributen te berekenen en dus bepaald hebben wat de
maandelijkse premie zal zijn, kun je je applicatie opnieuw openen in de Runtime en de berekeningen bekijken.
Heb je alle Read only’s goed staan (voor berekende velden) en de Refresh op invoervelden die bijdragen aan de
berekening?

5. Maak een beslistabel om te bepalen of iemand een gezonde of ongezonde levensstijl heeft.
Je zult twee rijen nodig hebben in deze tabel (eentje met de frequentie van bewegen en eentje met de aantallen
uren beweging). Extra rijen toevoegen doe je door helemaal linksboven te gaan staan en daar op de liggende
druppel te klikken.

Denk eraan dat de gezondheid Read only moet zijn en de invoer-attributen met beweging een Refresh krijgen op
de pagina! Test je applicatie weer in de Runtime.

18

6. Blueriq heeft de mogelijkheid om beslissingen te
visualiseren met een zogenaamd Decision
Requirements Diagram. Dat diagram is te zien door
op het weegschaaltje te klikken en is te bekijken (en
doorklikbaar!) voor elk afleidbaar attribuut, zoals
Polis.PremiePerMaand.

Het DRD voor de premie per maand
ziet er uit als hiernaast weergegeven.
Kun je beredeneren waarom dat
klopt? Het diagram is doorklikbaar,
dus met Ctrl-klik kun je navigeren
naar alle elementen van het diagram
en weer terug met het kleiner teken
linksboven dat element.

Als je rechtsboven op een icoontje
klikt, klapt hij open voor extra
informatie over de logica.

7. Het Decision Requirements Diagram kunnen we nog mooier maken, maar dat kost wel een klein beetje
werk. Bij elk attribuut is er namelijk ook de mogelijkheid om een functional name in te vullen. Als je dat
doet, verschijnt die in het DRD en wordt deze veel beter leesbaar. Dan is het eigenlijk maar een kleine
moeite toch?

