LEVEL 4: LOGICA
NIVEAU: X % % Y¢

De applicatie geeft nu pagina's weer en je kunt ertussen navigeren. De informatie die je op de aanvraagpagina invult,
wordt echter nog nergens voor gebruikt. In dit level voegen we logica toe aan de applicatie.

Hieronder staan de specificaties van de logica zoals aangeleverd door de fictieve zorgverzekeraar.
Deze gaan we in kleine stappen modelleren in Bluerig. Je hoeft die dus nu niet in één klap te modelleren!

Aangezien de aanvullende premie niet altijd hetzelfde is, maar afhangt van de waarde die je kiest als type
aanvullende verzekering, is een beslistabel (decision table) het element dat deze beslissing het beste kan
modelleren.

Maak de beslistabel zoals weergegeven aan en maak hem

. . . Polis.TypeAanvullendeVerzekering "Tandarts"”
verder af. Deze beslistabel (kies een zinvolle naam)
bepaalt de waarde van de premie van de aanvullende @ Polis PremieAanvullendeverzekering ~ o> & | 18
verzekering voor alle mogelijke aanvullende
Justifications -

verzekeringen: Tandarts, Fysiotherapie, beide (het
toverwoord is AND) of geen enkele (unknown is een ? in
Blueriq).

Een kolom toevoegen aan een beslistabel kan door in een cel te gaan staan en dan op de hangende druppel met
een plus erin ¥ te klikken. De volgorde van kolommen doet er doorgaans niet toe, maar omdat Blueriq stopt met
afleiden als er een waarde is bepaald én de tabel van links naar rechts afgewerkt wordt, geldt voor deze tabel dat
de volgorde wel van belang is. In ieder geval dient de kolom voor beide aanvullende verzekeringen vooraan te
staan!

16

4.

Koppel de beslistabel niet met een default value aan een attribuut! Het modelleren van de beslistabel zelf is
genoeg.

Als je wilt kijken in de Runtime, is de kans aanwezig dat deze tabel “het nog niet doet”. Dit komt omdat we in de
container of in die container op de pagina nog even moeten vertellen dat het attribuut
Polis.TypeAanvullendeVerzekering bij wijziging aanleiding is voor een herberekening en dus een Refresh = moet
veroorzaken.

Is de aanvullende premie

[#:] PolisGegevens [)
B die berekend wordt ook
E Polis ﬁ PremieBasisverzekering Read only? © Datis
noodzakelijk, want anders
E Polis ﬁ TypeAanvullendeVerzek... berekent Blueriq dat
attribuut niet, hoeveel
E Polis ﬁ PremieAanvullendeVerz... @

logica je er ook op loslaat.

De berekening voor het

attribuut voor de premie van de Attribute Default value
basisverzekering is altijd Eaty e R
hetzelfde, het is een constante Constant
voor dit attribuut! Daarvoor Data type Constant

51 currency Value list 09

gebruiken we de default value
(constant) bij het attribuut. Zet Multivalued

de default value van het

attribuut Polis.PremieBasisVerzekering op een Constant van 99.

De waarde van het attribuut Polis.Korting is If Polis.EigenRisico > 250
e ofwel 0 euro,
o ofwel 5% van de basispremie.

Dat hangt af van je eigen risico. We kunnen een business rule maken in
combinatie met een default value (constant) van 0 euro om deze korting af te

then & Polis.Korting @

|EIC|en. is Polis.PremieBasisVerzekering * .85

[=i}
Een beslistabel met een kolom voor 0 euro en een kolom 5% had ook gekund.

De berekening van het attribuut Polis.PremiePerMaand is een eenvoudige optel- en aftreksom van drie
attributen. Maak daarvoor een default value (expression) bij het attribuut.

Default value

Default value
Expression

Expression
Polis.PremieBasisVerzekering + Polis.PremiefAanvullendeVerzekering - Polis.Korting

Nu we de logica elementen hebben gemaakt om alle attributen te berekenen en dus bepaald hebben wat de
maandelijkse premie zal zijn, kun je je applicatie opnieuw openen in de Runtime en de berekeningen bekijken.
Heb je alle Read only’s goed staan (voor berekende velden) en de Refresh op invoervelden die bijdragen aan de
berekening?

Maak een beslistabel om te bepalen of iemand een gezonde of ongezonde levensstijl heeft.

Je zult twee rijen nodig hebben in deze tabel (eentje met de frequentie van bewegen en eentje met de aantallen
uren beweging). Extra rijen toevoegen doe je door helemaal linksboven te gaan staan en daar op de liggende
druppel = te klikken.

Denk eraan dat de gezondheid Read only moet zijn en de invoer-attributen met beweging een Refresh krijgen op
de pagina! Test je applicatie weer in de Runtime.

17

Bluerig heeft de mogelijkheid om beslissingen te .)
visualiseren met een zogenaamd Decision Attribute @

Requirements Diagram. Dat diagram is te zien door Entity Name
op het weegschaaltje te klikken en is te bekijken (en

doorklikbaar!) voor elk afleidbaar attribuut, zoals

Polis.PremiePerMaand.

Het DRD voor de premie per maand =

ziet er uit als hiernaast weergegeven. @ Polis PremiePerMaand

Kun je beredeneren waarom dat

klopt? Het diagram is doorklikbaar,

dus met Ctrl-klik kun je navigeren = HE v
naar alle elementen van het diagram @ Polis.PremieBasisverzek.. @ Polis.PremieAanvullende... @ Polis.Korting

en weer terug met het kleiner teken

linksboven dat element.

£z
Als je rechtsboven op eenicoontje @ Polis.PremieBasisVerzek...
klikt, klapt hij open voor extra
informatie over de logica.
FR Expression = Polis. PremiePerMaand Business knowledge
2 Constant @ Polis PremieEas\sVerzekﬁ £2 Pots 8 o =l 2 Poli SgenRisico () RS w2
& Polis.PremieAanvullende... & Polis.Korting
FR Constant FR constant

]

FZ Constant 2 Polis PremieBasisVerzek.

Het Decision Requirements Diagram kunnen we nog mooier maken, maar dat kost wel een klein beetje
werk. Bij elk is er namelijk ook de mogelijkheid om een functional name in te vullen. Als je dat
doet, verschijnt die in het DRD en wordt deze veel beter leesbaar. Dan is het eigenlijk maar een kleine
moeite toch?

F2

@ Totaalpremie per maand

B2 B =2 i

2 Premie basisverzekering = Premie aanvullende verze. .| = Korting

i

= Premie basisverzekering

18

